#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @ProjectName: Demo
# @Name: gm_test.py.py
# @Auth: arbboter
# @Date: 2022/9/6-14:06
# @Desc:
# @Ver : 0.0.0.1
from gmssl import sm2 as SM2
from gmssl import func as GMFunc
from random import SystemRandom
from base64 import b64encode, b64decode
class CurveFp:
def __init__(self, A, B, P, N, Gx, Gy, name):
self.A = A
self.B = B
self.P = P
self.N = N
self.Gx = Gx
self.Gy = Gy
self.name = name
class SM2Key:
sm2p256v1 = CurveFp(
name="sm2p256v1",
A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC,
B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF,
N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123,
Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7,
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0
)
@staticmethod
def multiply(a, n, N, A, P):
return SM2Key.fromJacobian(SM2Key.jacobianMultiply(SM2Key.toJacobian(a), n, N, A, P), P)
@staticmethod
def add(a, b, A, P):
return SM2Key.fromJacobian(SM2Key.jacobianAdd(SM2Key.toJacobian(a), SM2Key.toJacobian(b), A, P), P)
@staticmethod
def inv(a, n):
if a == 0:
return 0
lm, hm = 1, 0
low, high = a % n, n
while low > 1:
r = high // low
nm, new = hm - lm * r, high - low * r
lm, low, hm, high = nm, new, lm, low
return lm % n
@staticmethod
def toJacobian(Xp_Yp):
Xp, Yp = Xp_Yp
return Xp, Yp, 1
@staticmethod
def fromJacobian(Xp_Yp_Zp, P):
Xp, Yp, Zp = Xp_Yp_Zp
z = SM2Key.inv(Zp, P)
return (Xp * z ** 2) % P, (Yp * z ** 3) % P
@staticmethod
def jacobianDouble(Xp_Yp_Zp, A, P):
Xp, Yp, Zp = Xp_Yp_Zp
if not Yp:
return 0, 0, 0
ysq = (Yp ** 2) % P
S = (4 * Xp * ysq) % P
M = (3 * Xp ** 2 + A * Zp ** 4) % P
nx = (M ** 2 - 2 * S) % P
ny = (M * (S - nx) - 8 * ysq ** 2) % P
nz = (2 * Yp * Zp) % P
return nx, ny, nz
@staticmethod
def jacobianAdd(Xp_Yp_Zp, Xq_Yq_Zq, A, P):
Xp, Yp, Zp = Xp_Yp_Zp
Xq, Yq, Zq = Xq_Yq_Zq
if not Yp:
return Xq, Yq, Zq
if not Yq:
return Xp, Yp, Zp
U1 = (Xp * Zq ** 2) % P
U2 = (Xq * Zp ** 2) % P
S1 = (Yp * Zq ** 3) % P
S2 = (Yq * Zp ** 3) % P
if U1 == U2:
if S1 != S2:
return 0, 0, 1
return SM2Key.jacobianDouble((Xp, Yp, Zp), A, P)
H = U2 - U1
R = S2 - S1
H2 = (H * H) % P
H3 = (H * H2) % P
U1H2 = (U1 * H2) % P
nx = (R ** 2 - H3 - 2 * U1H2) % P
ny = (R * (U1H2 - nx) - S1 * H3) % P
nz = (H * Zp * Zq) % P
return nx, ny, nz
@staticmethod
def jacobianMultiply(Xp_Yp_Zp, n, N, A, P):
Xp, Yp, Zp = Xp_Yp_Zp
if Yp == 0 or n == 0:
return (0, 0, 1)
if n == 1:
return (Xp, Yp, Zp)
if n < 0 or n >= N:
return SM2Key.jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P)
if (n % 2) == 0:
return SM2Key.jacobianDouble(SM2Key.jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P)
if (n % 2) == 1:
mv = SM2Key.jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P)
return SM2Key.jacobianAdd(SM2Key.jacobianDouble(mv, A, P), (Xp, Yp, Zp), A, P)
class PrivateKey:
def __init__(self, curve=SM2Key.sm2p256v1, secret=None):
self.curve = curve
self.secret = secret or SystemRandom().randrange(1, curve.N)
def PublicKey(self):
curve = self.curve
xPublicKey, yPublicKey = SM2Key.multiply((curve.Gx, curve.Gy), self.secret, A=curve.A, P=curve.P, N=curve.N)
return PublicKey(xPublicKey, yPublicKey, curve)
def ToString(self):
return "{}".format(str(hex(self.secret))[2:].zfill(64))
class PublicKey:
def __init__(self, x, y, curve):
self.x = x
self.y = y
self.curve = curve
def ToString(self, compressed=True):
return '04' + {
True: str(hex(self.x))[2:],
False: "{}{}".format(str(hex(self.x))[2:].zfill(64), str(hex(self.y))[2:].zfill(64))
}.get(compressed)
class SM2Util:
def __init__(self, pub_key=None, pri_key=None):
self.pub_key = pub_key
self.pri_key = pri_key
self.sm2 = SM2.CryptSM2(public_key=self.pub_key, private_key=self.pri_key)
def Encrypt(self, data):
info = self.sm2.encrypt(data.encode())
return b64encode(info).decode()
def Decrypt(self, data):
info = b64decode(data.encode())
return self.sm2.decrypt(info).decode()
def Sign(self, data):
random_hex_str = GMFunc.random_hex(self.sm2.para_len)
sign = self.sm2.sign(data.encode(), random_hex_str)
return sign
def Verify(self, data, sign):
return self.sm2.verify(sign, data.encode())
@staticmethod
def GenKeyPair():
pri = PrivateKey()
pub = pri.PublicKey()
return pri.ToString(), pub.ToString(compressed=False)
def main():
"""
主函数
:return:
"""
import random
vs = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_+'
data = ''.join([vs[random.randint(0, len(vs) - 1)] for i in range(500)])
print('原数据:{}'.format(data))
e = SM2Util.GenKeyPair()
# e = ('', '')
print('私钥:{} 公钥:{}'.format(e[0], e[1]))
sm2 = SM2Util(pri_key=e[0], pub_key=e[1][2:])
sign = sm2.Sign(data)
print('签名:{} 验签:{}'.format(sign, sm2.Verify(data, sign)))
cipher = sm2.Encrypt(data)
print('加密:{}\n解密:{}'.format(cipher, sm2.Decrypt(cipher)))
if __name__ == '__main__':
main()
版权声明:本文为街角_祝福原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。