树状数组的区间修改区间查询

设差分数组\(c_i=a_i-a_{i-1}\)
\[\because a_i= \sum_{1}^{i}c_i\]

\[\therefore\sum_{i=1}^x a_i=\sum_{i=1}^x\sum_{j=1}^ic_j =\sum_{i=1}^x (x-i+1)*c_i\]

\[\sum_{i=1}^x a_i=(x+1)\sum_{i=1}^x c_i-\sum_{i=1}^x c_i \times i\]

修改

void add(long long k,long long z)
{
    for(long long i=k;i<=n;i+=(i& -i)) c[i]+=z,c1[i]+=(k-1)*z;
}

前缀和查询

long long qsum(long long k)
{
    long long ans=0;
    for(long long i=k;i>0;i-=(i & -i)) ans+=(long long)c[i]*k-c1[i];
    return ans;
}

调用

add(x,y); add(x+1,-y);

版权声明:本文为ZUTTER原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/ZUTTER/p/9552359.html