Python实现语音识别和语音合成
声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。
通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础。
案例:画出语音信号的波形和频率分布,(freq.wav数据地址)
# -*- encoding:utf-8 -*- import numpy as np import numpy.fft as nf import scipy.io.wavfile as wf import matplotlib.pyplot as plt sample_rate, sigs = wf.read(\'../machine_learning_date/freq.wav\') print(sample_rate) # 8000采样率 print(sigs.shape) # (3251,) sigs = sigs / (2 ** 15) # 归一化 times = np.arange(len(sigs)) / sample_rate freqs = nf.fftfreq(sigs.size, 1 / sample_rate) ffts = nf.fft(sigs) pows = np.abs(ffts) plt.figure(\'Audio\') plt.subplot(121) plt.title(\'Time Domain\') plt.xlabel(\'Time\', fontsize=12) plt.ylabel(\'Signal\', fontsize=12) plt.tick_params(labelsize=10) plt.grid(linestyle=\':\') plt.plot(times, sigs, c=\'dodgerblue\', label=\'Signal\') plt.legend() plt.subplot(122) plt.title(\'Frequency Domain\') plt.xlabel(\'Frequency\', fontsize=12) plt.ylabel(\'Power\', fontsize=12) plt.tick_params(labelsize=10) plt.grid(linestyle=\':\') plt.plot(freqs[freqs >= 0], pows[freqs >= 0], c=\'orangered\', label=\'Power\') plt.legend() plt.tight_layout() plt.show()
语音识别
梅尔频率倒谱系数(MFCC)通过与声音内容密切相关的13个特殊频率所对应的能量分布,可以使用梅尔频率倒谱系数矩阵作为语音识别的特征。基于隐马尔科夫模型进行模式识别,找到测试样本最匹配的声音模型,从而识别语音内容。
MFCC
梅尔频率倒谱系数相关API:
import scipy.io.wavfile as wf import python_speech_features as sf sample_rate, sigs = wf.read(\'../data/freq.wav\') mfcc = sf.mfcc(sigs, sample_rate)
案例:画出MFCC矩阵:
python -m pip install python_speech_features
import scipy.io.wavfile as wf import python_speech_features as sf import matplotlib.pyplot as mp sample_rate, sigs = wf.read( \'../ml_data/speeches/training/banana/banana01.wav\') mfcc = sf.mfcc(sigs, sample_rate) mp.matshow(mfcc.T, cmap=\'gist_rainbow\') mp.show()
隐马尔科夫模型
隐马尔科夫模型相关API:
import hmmlearn.hmm as hl model = hl.GaussianHMM(n_components=4, covariance_type=\'diag\', n_iter=1000) # n_components: 用几个高斯分布函数拟合样本数据 # covariance_type: 相关矩阵的辅对角线进行相关性比较 # n_iter: 最大迭代上限 model.fit(mfccs) # 使用模型匹配测试mfcc矩阵的分值 score = model.score(test_mfccs)
案例:训练training文件夹下的音频,对testing文件夹下的音频文件做分类
语音识别设计思路
1、读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)
import os import numpy as np import scipy.io.wavfile as wf import python_speech_features as sf import hmmlearn.hmm as hl # 1. 读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple...)。 def search_file(directory): """ :param directory: 训练音频的路径 :return: 字典{\'apple\':[url, url, url ... ], \'banana\':[...]} """ # 使传过来的directory匹配当前操作系统 directory = os.path.normpath(directory) objects = {} # curdir:当前目录 # subdirs: 当前目录下的所有子目录 # files: 当前目录下的所有文件名 for curdir, subdirs, files in os.walk(directory): for file in files: if file.endswith(\'.wav\'): label = curdir.split(os.path.sep)[-1] # os.path.sep为路径分隔符 if label not in objects: objects[label] = [] # 把路径添加到label对应的列表中 path = os.path.join(curdir, file) objects[label].append(path) return objects # 读取训练集数据 train_samples = search_file(\'../machine_learning_date/speeches/training\')
2、把所有类别为apple的mfcc合并在一起,形成训练集。
训练集:
train_x:[mfcc1,mfcc2,mfcc3,…],[mfcc1,mfcc2,mfcc3,…]…
train_y:[apple],[banana]…
由上述训练集样本可以训练一个用于匹配apple的HMM。
train_x, train_y = [], [] # 遍历字典 for label, filenames in train_samples.items(): # [(\'apple\', [\'url1,,url2...\']) # [("banana"),("url1,url2,url3...")]... mfccs = np.array([]) for filename in filenames: sample_rate, sigs = wf.read(filename) mfcc = sf.mfcc(sigs, sample_rate) if len(mfccs) == 0: mfccs = mfcc else: mfccs = np.append(mfccs, mfcc, axis=0) train_x.append(mfccs) train_y.append(label)
3、训练7个HMM分别对应每个水果类别。 保存在列表中。
# 训练模型,有7个句子,创建了7个模型 models = {} for mfccs, label in zip(train_x, train_y): model = hl.GaussianHMM(n_components=4, covariance_type=\'diag\', n_iter=1000) models[label] = model.fit(mfccs) # # {\'apple\':object, \'banana\':object ...}
4、读取testing文件夹中的测试样本,整理测试样本
测试集数据:
test_x: [mfcc1, mfcc2, mfcc3…]
test_y :[apple, banana, lime]
# 读取测试集数据 test_samples = search_file(\'../machine_learning_date/speeches/testing\') test_x, test_y = [], [] for label, filenames in test_samples.items(): mfccs = np.array([]) for filename in filenames: sample_rate, sigs = wf.read(filename) mfcc = sf.mfcc(sigs, sample_rate) if len(mfccs) == 0: mfccs = mfcc else: mfccs = np.append(mfccs, mfcc, axis=0) test_x.append(mfccs) test_y.append(label)
5、针对每一个测试样本:
1、分别使用7个HMM模型,对测试样本计算score得分。
2、取7个模型中得分最高的模型所属类别作为预测类别。
pred_test_y = [] for mfccs in test_x: # 判断mfccs与哪一个HMM模型更加匹配 best_score, best_label = None, None # 遍历7个模型 for label, model in models.items(): score = model.score(mfccs) if (best_score is None) or (best_score < score): best_score = score best_label = label pred_test_y.append(best_label) print(test_y) # [\'apple\', \'banana\', \'kiwi\', \'lime\', \'orange\', \'peach\', \'pineapple\'] print(pred_test_y) # [\'apple\', \'banana\', \'kiwi\', \'lime\', \'orange\', \'peach\', \'pineapple\']
声音合成
根据需求获取某个声音的模型频域数据,根据业务需要可以修改模型数据,逆向生成时域数据,完成声音的合成。
案例,(数据集12.json地址):
import json import numpy as np import scipy.io.wavfile as wf with open(\'../data/12.json\', \'r\') as f: freqs = json.loads(f.read()) tones = [ (\'G5\', 1.5), (\'A5\', 0.5), (\'G5\', 1.5), (\'E5\', 0.5), (\'D5\', 0.5), (\'E5\', 0.25), (\'D5\', 0.25), (\'C5\', 0.5), (\'A4\', 0.5), (\'C5\', 0.75)] sample_rate = 44100 music = np.empty(shape=1) for tone, duration in tones: times = np.linspace(0, duration, duration * sample_rate) sound = np.sin(2 * np.pi * freqs[tone] * times) music = np.append(music, sound) music *= 2 ** 15 music = music.astype(np.int16) wf.write(\'../data/music.wav\', sample_rate, music)