参考文章:

其实文章 [1] 是文章 [2] 的「二次创作」,建议先阅读 [2] 后再阅读 [1] 。文章 [2] 最大的亮点是使用了状态机图对股票问题进行建模和描述,我觉得是写得很好的文章(因为动态规划最原始的数学模型就是状态机)。

本文通过的题目有:

预备知识

股票买卖问题的本质是状态穷举。或者说,其实大部分动态规划问题都是状态穷举,只不过是某个状态的计算不是从初始条件开始计算,而是依赖于已经计算过的若干个状态。

股票问题面临的因素有三个:天数 \(N\) 、最大交易次数 \(K\) 、在某天股票的持有状态 \(S(S\in\{0,1\})\)

  • 状态定义

dp[i][k][s] 表示在第 i 天,最大交易次数为 k ,当前股票持状态为 s 的情况下的最大利润。其中,\(0 \le i \le n-1, 1 \le k \le K, 0 \le s \le 1\) .

显然,股票问题所需的结果是 dp[n-1][K][0] 。为什么不是 dp[n-1][K][1] 呢?因为该状态表示持有股票,最后需要的结果当然是不持有股票的,卖出才具有最大利润。

  • 转移方程

假设在第 i 天,最大交易次数为 k ,进行操作后没有持有股票,该状态依赖于:

  1. i-1 天持有股票,但是第 i 天卖出,即 dp[i-1][k][1] + price[i]
  2. i-1 天就不持有股票,即 dp[i-1][k][0]

假设在第 i 天,最大交易次数为 k ,进行操作后持有股票,该状态依赖于:

  1. i-1 天就持有股票,第 i 天什么都不做,即 dp[i-1][k][1]
  2. i-1 天不持有股票,第 i 天购入股票,即 dp[i-1][k-1][0] - price[i] 。因为第 i 天需要进行一次交易操作,所以要求前一天的交易次数减一。

所以有:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + price[i])    if i>=1 and k>=1
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - price[i])  if i>=1 and k>=1
dp[0][k][0] = 0                                               if i==0 and k>=1
dp[0][k][1] = -price[0]                                       if i==0 and k>=1

第三个下标只有 0 和 1 ,所以我个人更偏向于将这个三维数组拆分为 2 个二维数组:

dp0[i][k] = max(dp0[i-1][k], dp1[i-1][k] + price[i])    if i>=1 and k>=1
dp1[i][k] = max(dp1[i-1][k], dp0[i-1][k-1] - price[i])  if i>=1 and k>=1

本文就采用 2 个二维数组的形式去解题。

  • 边界条件

边界的发生主要发生在变量 ik 上,具体条件是 i == -1 k == 0

dp[-1][k][0] = 0, dp[-1][k][1] = -INF
dp[i][0][0] = 0, dp[i][0][1] = -INF

dp[-1][k][0] 表示允许交易(即 \(k \ge 1\)),但时间未开始(一个形象比喻:股票交易市场未开市),手上未持有股票,利润固然为 0 .

dp[i][0][0] 表示不允许交易,股票市场开市,所以利润为 0 .

dp[-1][k][1] 表示允许交易,股票市场未开市,但手中已持有股票,该状态是不可能的。

dp[i][0][1] 表示不允许交易,股票市场开市,但手中已持有股票,该状态也是不可能的。

因为求解过程中需要取 max ,所以不可能状态以最小值 -INF 表示。

买卖股票的最佳时机

题目[121]:

版权声明:本文为sinkinben原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/sinkinben/p/13056273.html