http://zonghl8006.blog.163.com/blog/static/4528311520083995931317/

  over(Partition by…) 一个超级牛皮的ORACLE特有函数。

天天都用ORACLE,用了快2年了。最近才接触到这个功能强大而灵活的函数。真实惭愧啊!

oracle的分析函数over 及开窗函数
一:分析函数over
Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是
对于每个组返回多行,而聚合函数对于每个组只返回一行。 
下面通过几个例子来说明其应用。                                       
1:统计某商店的营业额。        
     date       sale
     1           20
     2           15
     3           14
     4           18
     5           30
    规则:按天统计:每天都统计前面几天的总额
    得到的结果:
    DATE   SALE       SUM
    —– ——– ——
    1      20        20           –1天           
    2      15        35           –1天+2天           
    3      14        49           –1天+2天+3天           
    4      18        67            .          
    5      30        97            .
     
2:统计各班成绩第一名的同学信息
    NAME   CLASS S                         
    —– —– ———————- 
    fda    1      80                     
    ffd    1      78                     
    dss    1      95                     
    cfe    2      74                     
    gds    2      92                     
    gf     3      99                     
    ddd    3      99                     
    adf    3      45                     
    asdf   3      55                     
    3dd    3      78              
   
    通过:   
    —
    select * from                                                                       
    (                                                                            
    select name,class,s,rank()over(partition by class order by s desc) mm from t2
    )                                                                            
    where mm=1 
    —
    得到结果:
    NAME   CLASS S                       MM                                                                                        
    —– —– ———————- ———————- 
    dss    1      95                      1                      
    gds    2      92                      1                      
    gf     3      99                      1                      
    ddd    3      99                      1          
   
    注意:
    1.在求第一名成绩的时候,不能用row_number(),因为如果同班有两个并列第一,row_number()只返回一个结果         
    2.rank()和dense_rank()的区别是:
      –rank()是跳跃排序,有两个第二名时接下来就是第四名
      –dense_rank()l是连续排序,有两个第二名时仍然跟着第三名
     
     
3.分类统计 (并显示信息)
    A   B   C                      
    — — ———————- 
    m   a   2                      
    n   a   3                      
    m   a   2                      
    n   b   2                      
    n   b   1                      
    x   b   3                      
    x   b   2                      
    x   b   4                      
    h   b   3 
   select a,c,sum(c)over(partition by a) from t2                
   得到结果:
   A   B   C        SUM(C)OVER(PARTITIONBYA)      
   — — ——- ———————— 
   h   b   3        3                        
   m   a   2        4                        
   m   a   2        4                        
   n   a   3        6                        
   n   b   2        6                        
   n   b   1        6                        
   x   b   3        9                        
   x   b   2        9                        
   x   b   4        9                        
  
   如果用sum,group by 则只能得到
   A   SUM(C)                            
   — ———————- 
   h   3                      
   m   4                      
   n   6                      
   x   9                      
   无法得到B列值       
  
=====
select * from test

数据:
A B C 
1 1 1 
1 2 2 
1 3 3 
2 2 5 
3 4 6

—将B栏位值相同的对应的C 栏位值加总
select a,b,c, SUM(C) OVER (PARTITION BY B) C_Sum
from test

A B C C_SUM 
1 1 1 1 
1 2 2 7 
2 2 5 7 
1 3 3 3 
3 4 6 6

 

—如果不需要已某个栏位的值分割,那就要用 null

eg: 就是将C的栏位值summary 放在每行后面

select a,b,c, SUM(C) OVER (PARTITION BY null) C_Sum
from test

A B C C_SUM 
1 1 1 17 
1 2 2 17 
1 3 3 17 
2 2 5 17 
3 4 6 17

 

求个人工资占部门工资的百分比

SQL> select * from salary;

NAME DEPT SAL
———- —- —–
a 10 2000
b 10 3000
c 10 5000
d 20 4000

SQL> select name,dept,sal,sal*100/sum(sal) over(partition by dept) percent from salary;

NAME DEPT SAL PERCENT
———- —- —– ———-
a 10 2000 20
b 10 3000 30
c 10 5000 50
d 20 4000 100

二:开窗函数           
      开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化,举例如下: 
1:     
   over(order by salary) 按照salary排序进行累计,order by是个默认的开窗函数
   over(partition by deptno)按照部门分区
2:
  over(order by salary range between 5 preceding and 5 following)
   每行对应的数据窗口是之前行幅度值不超过5,之后行幅度值不超过5
   例如:对于以下列
     aa
     1
     2
     2
     2
     3
     4
     5
     6
     7
     9
   
   sum(aa)over(order by aa range between 2 preceding and 2 following)
   得出的结果是
            AA                       SUM
            ———————- ——————————————————- 
            1                       10                                                      
            2                       14                                                      
            2                       14                                                      
            2                       14                                                      
            3                       18                                                      
            4                       18                                                      
            5                       22                                                      
            6                       18                                                                
            7                       22                                                                
            9                       9                                                                 
             
   就是说,对于aa=5的一行 ,sum为   5-1<=aa<=5+2 的和
   对于aa=2来说 ,sum=1+2+2+2+3+4=14     ;
   又如 对于aa=9 ,9-1<=aa<=9+2 只有9一个数,所以sum=9    ;
              
3:其它:
     over(order by salary rows between 2 preceding and 4 following)
          每行对应的数据窗口是之前2行,之后4行 
4:下面三条语句等效:           
     over(order by salary rows between unbounded preceding and unbounded following)
          每行对应的数据窗口是从第一行到最后一行,等效:
     over(order by salary range between unbounded preceding and unbounded following)
           等效
     over(partition by null)

 

常用的分析函数如下所列:

row_number() over(partition by … order by …)
rank() over(partition by … order by …)
dense_rank() over(partition by … order by …)
count() over(partition by … order by …)
max() over(partition by … order by …)
min() over(partition by … order by …)
sum() over(partition by … order by …)
avg() over(partition by … order by …)
first_value() over(partition by … order by …)
last_value() over(partition by … order by …)
lag() over(partition by … order by …)
lead() over(partition by … order by …)

示例
SQL> select type,qty from test;

TYPE QTY
———- ———-
1 6
2 9

 SQL> select type,qty,to_char(row_number() over(partition by type order by qty))||\’/\’||to_char(count(*) over(partition by type)) as cnt2 from test;

TYPE QTY CNT2 
———- ———- ————
3 1/2
1 6 2/2
2 5 1/3
7 2/3 
2 9 3/3

 SQL> select * from test;
———- ————————————————-
1 11111
2 22222
3 33333
4 44444

SQL> select t.id,mc,to_char(b.rn)||\’/\’||t.id)e
2 from test t,
 (select rownum rn from (select max(to_number(id)) mid from test) connect by rownum <=mid ))L
4 where b.rn<=to_number(t.id)
order by id

ID MC TO_CHAR(B.RN)||\’/\’||T.ID
——— ————————————————– —————————————————
1 11111 1/1
2 22222 1/2
2 22222 2/2
3 33333 1/3
3 33333 2/3
3 33333 3/3
 44444 1/4 44444 2/4
4 44444 3/4CNOUG4 44444 4/4

10 rows selected

*******************************************************************

关于partition by

这些都是分析函数,好像是8.0以后才有的 row_number()和rownum差不多,功能更强一点(可以在各个分组内从1开时排序) rank()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内) dense_rank()l是连续排序,有两个第二名时仍然跟着第三名。相比之下row_number是没有重复值的 lag(arg1,arg2,arg3): arg1是从其他行返回的表达式 arg2是希望检索的当前行分区的偏移量。是一个正的偏移量,时一个往回检索以前的行的数目。 arg3是在arg2表示的数目超出了分组的范围时返回的值。

1.
select deptno,row_number() over(partition by deptno order by sal) from emp order by deptno;
2.
select deptno,rank() over (partition by deptno order by sal) from emp order by deptno;
3.
select deptno,dense_rank() over(partition by deptno order by sal) from emp order by deptno;
4.
select deptno,ename,sal,lag(ename,1,null) over(partition by deptno order by ename) from emp ord er by deptno;
5.
select deptno,ename,sal,lag(ename,2,\’example\’) over(partition by deptno order by ename) from em p
order by deptno;
6.
select deptno, sal,sum(sal) over(partition by deptno) from emp;–每行记录后都有总计值  select deptno, sum(sal) from emp group by deptno;
7. 求每个部门的平均工资以及每个人与所在部门的工资差额

select deptno,ename,sal ,
     round(avg(sal) over(partition by deptno)) as dept_avg_sal, 
     round(sal-avg(sal) over(partition by deptno)) as dept_sal_diff
from emp;

版权声明:本文为dongyj原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/dongyj/p/5992083.html