【大数据】爬取网易云《大碗宽面》歌评
作业要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3075
一、爬取对象
4月19日,吴亦凡在网上发布了一首新歌,这首歌的名字非常有意思,叫做《大碗宽面》,这首歌《大碗宽面》其实是之前一直被大家恶搞的梗,是吴亦凡在参加综艺《72层奇楼》是说的“你看着面它又长又宽,就像这碗它又大又圆”之后吴亦凡还被做成了各种各样的表情包。没想到如今竟被本尊拿出来调侃了,时隔两年,吴亦凡将自己的 “黑梗” 写成歌,既娱乐了大众,又表达了自己的立场和态度。
二、数据爬取
2.1 爬取配置
爬虫部分主要是调用官方API,本次用到的API主要有两个:
获取评论:
http://music.163.com/api/v1/resource/comments/R_SO_4_{歌曲ID}?limit={每页限制数量}&offset={评论数总偏移}
获取评论对应用户的信息:
https://music.163.com/api/v1/user/detail/{用户ID}
# -*- coding:utf-8 -*- import re SONGID = \'1359595520\' SONGNAME = \'大碗宽面\' LIMIT_NUM = 100 PATTERN = re.compile(r\'[\n\t\r\/]\') #替换掉评论中的特殊字符以防插入数据库时报错
#数据库配置 DATABASE = \'music\' TABLE_COMMENTS = \'comment\' TABLE_USERS = \'user\' HOST = \'localhost\' USER = \'root\' PASSWD = \'123456\' ROOT_USER_URL = \'https://music.163.com/api/v1/user/detail/\' ROOT_COMMENT_URL = \'http://music.163.com/api/v1/resource/comments/R_SO_4_\'+SONGID+\'?limit=\'+str(LIMIT_NUM)+\'&offset=%s\' HEADERS = { \'User-Agent\': \'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36\', \'Host\': \'music.163.com\', \'Cookie\': \'\', } #代理ip
PROXIES = [{\'http\':\'119.191.79.46:80\'},{\'http\':\'103.40.48.193:82\'},{\'http\':\'47.94.173.121:9876\'},{\'http\':\'120.78.145.111:80\'},
{\'http\':\'47.93.114.82:3128\'},{\'http\':\'103.228.142.152:8080\'},{\'http\':\'218.89.14.142:8060\'},{\'http\':\'117.191.11.71:80\'},
{\'http\':\'123.120.193.42:8060\'},{\'http\':\'116.209.57.190:9999\'},{\'http\':\'110.52.235.248:9999\'},{\'http\':\'119.180.139.54:8060\'},
{\'http\':\'61.183.233.6:54896\'},{\'http\':\'123.117.179.134:8060\'},{\'http\':\'39.137.69.7:8080\'},{\'http\':\'120.77.170.64:8080\'}]
2.2代理地址有效性验证
用于验证代理ip是否能访问目标地址:
import requests import config for ip in config.PROXIES: try: requests.get(\'https://music.163.com/\', proxies=ip) except: print(\'connect failed\') else: print(\'success\')
2.3 评论爬取
# -*- coding=utf-8 -*- import json import random from datetime import datetime import requests import config import pymysql import gevent from gevent import monkey monkey.patch_all() class Crawler(object): def run(self, url): print(\'crawl \', url) self.parse_page(url) def down(self,url): try: return requests.get(url=url, headers=config.HEADERS,proxies=random.choice(config.PROXIES)).text except Exception as e: print(\'down err>>>\', e) def parse_page(self, url): content = self.down(url) js = json.loads(content) datas = [] for c in js[\'comments\']: data = {} try: data[\'commentId\'] = c[\'commentId\'] data[\'content\'] = config.PATTERN.sub(\'\', c[\'content\']) data[\'likedCount\'] = int(c[\'likedCount\']) data[\'time\'] = datetime.fromtimestamp(c[\'time\']//1000) data[\'userId\'] = c[\'user\'][\'userId\'] datas.append(data) except Exception as e: print(\'解析js出错>>>\', e) self.save(datas) def save(self, datas): conn = pymysql.connect(host=config.HOST, user=config.USER, passwd=config.PASSWD, db=config.DATABASE, charset=\'utf8mb4\') # 注意字符集要设为utf8mb4,以支持存储评论中的emoji表情 cursor = conn.cursor() sql = \'insert into \'+config.TABLE_COMMENTS+\' (commentId,content,likedCount,time,userId,songId,songName) VALUES (%s,%s,%s,%s,%s,%s,%s)\' for data in datas: try: # cursor.execute(\'SELECT max(id) FROM \'+config.TABLE_COMMENTS) # s = cursor.fetchone()[0] # if s: # id_ = s+1 # else: # id_ = 1 cursor.execute(sql, (data[\'commentId\'], data[\'content\'], data[\'likedCount\'], data[\'time\'], data[\'userId\'], config.SONGID,config.SONGNAME)) conn.commit() except Exception as e: print(\'存储错误>>>\', e) cursor.close() conn.close() def main(self, pages): url_list = [config.ROOT_COMMENT_URL%(num*config.LIMIT_NUM) for num in range(0, pages//config.LIMIT_NUM+1)] job_list = [gevent.spawn(self.run, url) for url in url_list] gevent.joinall(job_list) def getTotal(): try: req = requests.get(config.ROOT_COMMENT_URL%(0), headers=config.HEADERS,proxies=random.choice(config.PROXIES)).text js = json.loads(req) return js[\'total\'] except Exception as e: print(e) return None if __name__=="__main__": total = getTotal() spider = Crawler() spider.main(total)
爬取的用户评论数据:
1.4 用户信息爬取
单线程爬取网易云音乐用户信息并存储进数据库。根据获取用户信息的API,请求URL有1个可变部分:用户ID,前一部分已经将每条评论对应的用户ID也存储下来,这里只需要从数据库取用户ID并抓取信息即可:
# -*- coding:utf8 -*- import random import requests import json import pymysql import config import re # 数据表设计如下: \'\'\' id(int) userId(varchar) gender(char) userName(varchar) age(int) level(int) city(varchar) sign(text) eventCount(int) followedCount(int) followsCount(int) recordCount(int) avatar(varchar) \'\'\' PATTERN = re.compile(r\'[\n\t\r\/]\') # 替换掉签名中的特殊字符以防插入数据库时报错 def getData(url): if not url: return None print(\'Crawling>>> \' + url) try: # req = request.Request(url, headers=headers) # content = request.urlopen(req).read().decode("utf-8") # js = json.loads(content) req = requests.get(url, headers=config.HEADERS,proxies=random.choice(config.PROXIES)).text js = json.loads(req) data = {} if js[\'code\'] == 200: data[\'userId\'] = js[\'profile\'][\'userId\'] data[\'userName\'] = js[\'profile\'][\'nickname\'] data[\'avatar\'] = js[\'profile\'][\'avatarUrl\'] data[\'gender\'] = js[\'profile\'][\'gender\'] if int(js[\'profile\'][\'birthday\'])<0: data[\'age\'] = 0 else: data[\'age\'] =(2019-1970)-(int(js[\'profile\'][\'birthday\'])//(1000*365*24*3600)) if int(data[\'age\'])<0: data[\'age\'] = 0 data[\'level\'] = js[\'level\'] data[\'sign\'] = PATTERN.sub(\' \', js[\'profile\'][\'signature\']) data[\'eventCount\'] = js[\'profile\'][\'eventCount\'] data[\'followCount\'] = js[\'profile\'][\'follows\'] data[\'fanCount\'] = js[\'profile\'][\'followeds\'] data[\'city\'] = js[\'profile\'][\'city\'] data[\'recordCount\'] = js[\'listenSongs\'] except Exception as e: print(\'Down err>>> \', e) pass return data def saveData(data): if not data: return None conn = pymysql.connect(host=\'localhost\', user=config.USER, passwd=config.PASSWD, db=config.DATABASE, charset=\'utf8mb4\') # 注意字符集要设为utf8mb4,以支持存储签名中的emoji表情 cursor = conn.cursor() sql = \'insert into \' + config.TABLE_USERS + \' (userName,gender,age,level,city,sign,eventCount,followCount,fanCount,recordCount,avatar,userId) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)\' try: cursor.execute(sql, (data[\'userName\'],data[\'gender\'],data[\'age\'],data[\'level\'],data[\'city\'],data[\'sign\'],data[\'eventCount\'],data[\'followCount\'],data[\'fanCount\'],data[\'recordCount\'],data[\'avatar\'],data[\'userId\'])) conn.commit() except Exception as e: print(\'mysql err>>> \',data[\'userId\'],e) pass finally: cursor.close() conn.close() def getID(): conn = pymysql.connect(host=\'localhost\', user=config.USER, passwd=config.PASSWD, db=config.DATABASE, charset=\'utf8mb4\') cursor = conn.cursor() sql = \'SELECT userId FROM \'+config.TABLE_COMMENTS try: cursor.execute(sql) res = cursor.fetchall() return res except Exception as e: print(\'get err>>> \', e) pass finally: cursor.close() conn.close() return None if __name__ == \'__main__\': usersID = getID() for i in usersID: data = getData(config.ROOT_USER_URL+i[0].strip()) saveData(data)
爬取的用户信息数据:
三、数据分析
3.1 用户信息分析
# -*- coding:utf8 -*-
import pandas as pd
import numpy as np
import pymysql
from pyecharts import Bar, Pie, Line, Scatter, Map
import config
TABLE_COMMENTS = config.TABLE_COMMENTS
TABLE_USERS = config.TABLE_USERS
DATABASE = config.DATABASE
conn = pymysql.connect(host=\'localhost\', user=\'root\', passwd=\'123456\', db=DATABASE, charset=\'utf8mb4\')
sql_users = \'SELECT id,gender,age,city,level FROM \' + TABLE_USERS
sql_comments = \'SELECT id,time FROM \' + TABLE_COMMENTS
comments = pd.read_sql(sql_comments, con=conn)
users = pd.read_sql(sql_users, con=conn)
# 评论时间(按天)分布分析
comments_day = comments[\'time\'].dt.date.to_frame()
comments_day = users[\'id\'].to_frame().join(comments_day)
data = comments_day.id.groupby(comments_day[\'time\']).count()
line = Line(\'评论时间(按天)分布\')
line.use_theme(\'dark\')
line.add(
\'\',
data.index.values,
data.values,
is_fill=True,
)
line.render(r\'./评论时间(按天)分布.html\')
# 评论时间(按小时)分布分析
comments_hour = comments[\'time\'].dt.hour.to_frame()
comments_hour = users[\'id\'].to_frame().join(comments_hour)
data = comments_hour.id.groupby(comments_hour[\'time\']).count()
line = Line(\'评论时间(按小时)分布\')
line.use_theme(\'dark\')
line.add(
\'\',
data.index.values,
data.values,
is_fill=True,
)
line.render(r\'./评论时间(按小时)分布.html\')
# 用户年龄分布分析
age = users[users[\'age\'] > 0] # 清洗掉年龄小于1的数据
age = age.id.groupby(age[\'age\']).count() # 以年龄值对数据分组
Bar_age = Bar(\'用户年龄分布\')
Bar_age.use_theme(\'dark\')
Bar_age.add(
\'\',
age.index.values,
age.values,
is_fill=True,
)
Bar_age.render(r\'./用户年龄分布图.html\') # 生成渲染的html文件
# 用户等级分布分析
level = users[users[\'level\'] > 0] # 清洗掉年龄小于1的数据
level = level.id.groupby(level[\'level\']).count() # 以年龄值对数据分组
Bar_level = Bar(\'用户等级分布\')
Bar_level.use_theme(\'dark\')
Bar_level.add(
\'\',
level.index.values,
level.values,
is_fill=True,
)
Bar_level.render(r\'./用户等级分布图.html\') # 生成渲染的html文件
# 用户地区分布分析
# 城市code编码转换
def city_group(cityCode):
city_map = {
\'11\': \'北京\',
\'12\': \'天津\',
\'31\': \'上海\',
\'50\': \'重庆\',
\'5e\': \'重庆\',
\'81\': \'香港\',
\'82\': \'澳门\',
\'13\': \'河北\',
\'14\': \'山西\',
\'15\': \'内蒙古\',
\'21\': \'辽宁\',
\'22\': \'吉林\',
\'23\': \'黑龙江\',
\'32\': \'江苏\',
\'33\': \'浙江\',
\'34\': \'安徽\',
\'35\': \'福建\',
\'36\': \'江西\',
\'37\': \'山东\',
\'41\': \'河南\',
\'42\': \'湖北\',
\'43\': \'湖南\',
\'44\': \'广东\',
\'45\': \'广西\',
\'46\': \'海南\',
\'51\': \'四川\',
\'52\': \'贵州\',
\'53\': \'云南\',
\'54\': \'西藏\',
\'61\': \'陕西\',
\'62\': \'甘肃\',
\'63\': \'青海\',
\'64\': \'宁夏\',
\'65\': \'新疆\',
\'71\': \'台湾\',
\'10\': \'其他\',
}
return city_map[cityCode[:2]]
city = users[\'city\'].apply(city_group).to_frame()
city = users[\'id\'].to_frame().join(city)
city = city.id.groupby(city[\'city\']).count()
map_ = Map(\'用户地区分布图\')
map_.add(
\'\',
city.index.values,
city.values,
maptype=\'china\',
is_visualmap=True,
visual_text_color=\'#000\',
is_map_symbol_show=False,
is_label_show=True,
)
map_.render(r\'./用户地区分布图.html\')
评论数时间(按天)分布:
这首歌从2019年4月19号发布,当天的评论数最多,随着时间的递增评论数逐渐减少,但是评论数仍然大于两千,说明这首歌引起了网友们的热议。
评论数时间(按小时)分布:
评论数在10点钟突增,据了解,歌手在微博上发布这首歌同样是十点,与4月19号当天的评论数相近,所以大部分评论都集中在歌手刚发布这首歌的时候,通过网络传播极其迅速。
用户年龄分布:
用户年龄分布图可以看出,用户大多集中在14-30岁之间,以20岁左右居多,除去虚假年龄之外,这个年龄分布也符合网易云用户的年龄段。评论这首歌的用户以年轻人居多。
用户地区分布:
除了西藏、青海、台湾等省份较少,评论用户涵盖了全国各大省份,可以看出这首歌曲已发布就传遍各个地方了。
3.2 用户评论分析
# -*- coding:utf8 -*-
import jieba
import pandas as pd
import pymysql
from wordcloud import WordCloud
import matplotlib.pyplot as plt
TABLE_COMMENTS = \'comment\'
DATABASE = \'music\'
SONGNAME = \'大碗宽面\'
def getText():
conn = pymysql.connect(host=\'localhost\', user=\'root\', passwd=\'123456\', db=DATABASE, charset=\'utf8\')
sql = \'SELECT id,content FROM \'+ TABLE_COMMENTS
text = pd.read_sql(sql, con=conn)
return text
def getWordcloud(text):
text = \'\'.join(str(s) for s in text[\'content\'] if s)
word_list = jieba.cut(text, cut_all=False)
stopwords = [line.strip() for line in open(r\'./StopWords.txt\', \'r\',encoding=\'UTF-8\').readlines()] # 导入停用词
clean_list = [seg for seg in word_list if seg not in stopwords] # 去除停用词
clean_text = \'\'.join(clean_list)
# 生成词云
cloud = WordCloud(
font_path=r\'C:/Windows/Fonts/msyh.ttc\',
background_color=\'white\',
max_words=800,
max_font_size=64
)
word_cloud = cloud.generate(clean_text)
# 绘制词云
plt.figure(figsize=(12, 12))
plt.imshow(word_cloud)
plt.axis(\'off\')
plt.show()
if __name__ == \'__main__\':
text = getText()
getWordcloud(text)
生成的词云如下:
在词云图中可以看到,除了一些表情例如呲牙、憨笑等之外,出现比较多的是蔡徐坤、吴亦凡、公鸡、太美、好听等字眼,网友喜欢通过这首歌对两位明星进行对比;从对不起、加油等字眼可以看出对这位歌手的态度有所转变了;从碗又大又圆、看面、吃饭来看,咱也不敢说,咱也不敢问,宽面确实挺好吃!!!