前言

爬一波大众点评上美食板块的数据,顺便再把爬到的数据做一波可视化分析

开发工具

Python版本:3.6.4

相关模块:

scrapy模块;

requests模块;

fontTools模块;

pyecharts模块;

以及一些python自带的模块。

环境搭建

安装python并添加到环境变量,pip安装需要的相关模块即可。

数据爬取

首先,我们新建一个名为大众点评的scrapy项目:

scrapy startproject dazhongdianping

效果如下:

然后去大众点评踩个点吧,这里以杭州为例:

http://www.dianping.com/hangzhou/ch10

显然,我们想爬取的数据如下图红框所示:

在items.py里定义一下这些数据类型:

\'\'\'定义要爬取的数据\'\'\'
class DazhongdianpingItem(scrapy.Item):
    # 店名
    shopname = scrapy.Field()
    # 点评数量
    num_comments = scrapy.Field()
    # 人均价格
    avg_price = scrapy.Field()
    # 美食类型
    food_type = scrapy.Field()
    # 所在商区
    business_district_name = scrapy.Field()
    # 具体位置
    location = scrapy.Field()
    # 口味评分
    taste_score = scrapy.Field()
    # 环境评分
    environment_score = scrapy.Field()
    # 服务评分
    serve_score = scrapy.Field()

然后利用正则表达式来提取网页中我们想要的数据(字体反爬我就不讲了,知乎随便搜一下,就好多相关的文章T_T。只要下载对应的字体文件,然后找到对应的映射关系就ok啦):

# 提取我们想要的数据
all_infos = re.findall(r\'<li class="" >(.*?)<div class="operate J_operate Hide">\', response.text, re.S|re.M)
for info in all_infos:
    item = DazhongdianpingItem()
    # --店名
    item[\'shopname\'] = re.findall(r\'<h4>(.*?)<\/h4>\', info, re.S|re.M)[0]
    # --点评数量
    try:
        num_comments = re.findall(r\'LXAnalytics\(\\'moduleClick\\', \\'shopreview\\'\).*?>(.*?)<\/b>\', info, re.S|re.M)[0]
        num_comments = \'\'.join(re.findall(r\'>(.*?)<\', num_comments, re.S|re.M))
        for k, v in shopnum_crack_dict.items():
            num_comments = num_comments.replace(k, str(v))
        item[\'num_comments\'] = num_comments
    except:
        item[\'num_comments\'] = \'null\'
    # --人均价格
    try:
        avg_price = re.findall(r\'<b>¥(.*?)<\/b>\', info, re.S|re.M)[0]
        avg_price = \'\'.join(re.findall(r\'>(.*?)<\', avg_price, re.S|re.M))
        for k, v in shopnum_crack_dict.items():
            avg_price = avg_price.replace(k, str(v))
        item[\'avg_price\'] = avg_price
    except:
        item[\'avg_price\'] = \'null\'
    # --美食类型
    food_type = re.findall(r\'<a.*?data-click-name="shop_tag_cate_click".*?>(.*?)<\/span>\', info, re.S|re.M)[0]
    food_type = \'\'.join(re.findall(r\'>(.*?)<\', food_type, re.S|re.M))
    for k, v in tagname_crack_dict.items():
        food_type = food_type.replace(k, str(v))
    item[\'food_type\'] = food_type
    # --所在商区
    business_district_name = re.findall(r\'<a.*?data-click-name="shop_tag_region_click".*?>(.*?)<\/span>\', info, re.S|re.M)[0]
    business_district_name = \'\'.join(re.findall(r\'>(.*?)<\', business_district_name, re.S|re.M))
    for k, v in tagname_crack_dict.items():
        business_district_name = business_district_name.replace(k, str(v))
    item[\'business_district_name\'] = business_district_name
    # --具体位置
    location = re.findall(r\'<span class="addr">(.*?)<\/span>\', info, re.S|re.M)[0]
    location = \'\'.join(re.findall(r\'>(.*?)<\', location, re.S|re.M))
    for k, v in address_crack_dict.items():
        location = location.replace(k, str(v))
    item[\'location\'] = location
    # --口味评分
    try:
        taste_score = re.findall(r\'口味<b>(.*?)<\/b>\', info, re.S|re.M)[0]
        taste_score = \'\'.join(re.findall(r\'>(.*?)<\', taste_score, re.S|re.M))
        for k, v in shopnum_crack_dict.items():
            taste_score = taste_score.replace(k, str(v))
        item[\'taste_score\'] = taste_score
    except:
        item[\'taste_score\'] = \'null\'
    # --环境评分
    try:
        environment_score = re.findall(r\'环境<b>(.*?)<\/b>\', info, re.S|re.M)[0]
        environment_score = \'\'.join(re.findall(r\'>(.*?)<\', environment_score, re.S|re.M))
        for k, v in shopnum_crack_dict.items():
            environment_score = environment_score.replace(k, str(v))
        item[\'environment_score\'] = environment_score
    except:
        item[\'environment_score\'] = \'null\'
    # --服务评分
    try:
        serve_score = re.findall(r\'服务<b>(.*?)<\/b>\', info, re.S|re.M)[0]
        serve_score = \'\'.join(re.findall(r\'>(.*?)<\', serve_score, re.S|re.M))
        for k, v in shopnum_crack_dict.items():
            serve_score = serve_score.replace(k, str(v))
        item[\'serve_score\'] = serve_score
    except:
        item[\'serve_score\'] = \'null\'
    # --yield
    yield item

最后在终端运行如下命令就可以爬取我们想要的数据啦:

scrapy crawl dazhongdianping -o infos.json -t json

文章到这里就结束了,感谢你的观看,关注我每天分享Python爬虫实战系列,下篇文章分享中国地震台网爬虫。

版权声明:本文为daimubai原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/daimubai/archive/2021/06/19/14905091.html