图像分类与检测领域常用数据集汇总

 图像分类与检测领域常用数据集
数据库  图像数目  类别数目 每类图像数目 图像大小(pixel) 数据库论文(点击即可获取论文,如果无法下载,推荐使用SCI-HUB
 MNIST 60000 10 6000

28×28

Gradient-based learning applied to document recognition
 CIFAR-10 60000   10 6000 32×32 Learning multiple layers of features from tiny images
 MPEG-7 1400 70 20 256×256-650×600 Shape descriptors for non-rigid shapes with a single closed contour
15 Scenes   4485 15 200-400 约 300×250 Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
 Caltech-101  9146 101 40-800 约 300×200 Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
Caltech-256  30607 256 >80 约 300×200 Caltech-256 object category dataset
 PASCAL VOC 2007  9963  20 96-2008  约 470×380

The PASCAL Visual Object Classes (VOC) Challenge

 SUN397 108754  397  >100 约 500×300 Sun database: Large-scale scene recognition from abbey to zoo
SUN2012   16873 8 2000 约 500×300 Sun database: Large-scale scene recognition from abbey to zoo
 Tiny Images 7900万 75062  32×32 80 million tiny images: A large data set for nonparametric object and scene recognition
 ImageNet-1000 120万 1000 约 500×400 Imagenet: A large-scale hierarchical image database
 ImageNet  1400万 10万 1000  约 500×400 Imagenet: A large-scale hierarchical image database

 

欢迎关注公众号:一刻AI

参考文献:黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述[J]. 计算机学报, 2014, 37(6): 1225-1240.

 

版权声明:本文为lky-learning原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/lky-learning/p/12392257.html