Python的scrapy之爬取链家网房价信息并保存到本地
因为有在北京租房的打算,于是上网浏览了一下链家网站的房价,想将他们爬取下来,并保存到本地。
先看链家网的源码。。房价信息 都保存在 ul 下的li 里面
爬虫结构:
其中封装了一个数据库处理模块,还有一个user-agent池。。
先看mylianjia.py
# -*- coding: utf-8 -*- import scrapy from ..items import LianjiaItem from scrapy.http import Request from parsel import Selector import requests import os class MylianjiaSpider(scrapy.Spider): name = \'mylianjia\' #allowed_domains = [\'lianjia.com\'] start_urls = [\'https://bj.lianjia.com/ershoufang/chaoyang/pg\'] def start_requests(self): for i in range(1, 101): #100页的所有信息 url1 = self.start_urls + list(str(i)) #print(url1) url = \'\' for j in url1: url += j + \'\' yield Request(url, self.parse) def parse(self, response): print(response.url) \'\'\' response1 = requests.get(response.url, params={\'search_text\': \'粉墨\', \'cat\': 1001}) if response1.status_code == 200: print(response1.text) dirPath = os.path.join(os.getcwd(), \'data\') if not os.path.exists(dirPath): os.makedirs(dirPath) with open(os.path.join(dirPath, \'lianjia.html\'), \'w\', encoding=\'utf-8\')as fp: fp.write(response1.text) print(\'网页源码写入完毕\') \'\'\' infoall=response.xpath("//div[4]/div[1]/ul/li") #infos = response.xpath(\'//div[@class="info clear"]\') #print(infos) #info1 = infoall.xpath(\'div/div[1]/a/text()\').extract_first() #print(infoall) for info in infoall: item =LianjiaItem() #print(info) info1 = info.xpath(\'div/div[1]/a/text()\').extract_first() info1_url = info.xpath(\'div/div[1]/a/@href\').extract_first() #info2 = info.xpath(\'div/div[2]/div/text()\').extract_first() info2_dizhi = info.xpath(\'div/div[2]/div/a/text()\').extract_first() info2_xiangxi= info.xpath(\'div/div[2]/div/text()\').extract() #info3 = info.xpath(\'div/div[3]/div/a/text()\').extract_first() #info4 = info.xpath(\'div/div[4]/text()\').extract_first() price = info.xpath(\'div/div[4]/div[2]/div/span/text()\').extract_first() perprice = info.xpath(\'div/div[4]/div[2]/div[2]/span/text()\').extract_first() #print(info1,\'--\',info1_url,\'--\',info2_dizhi,\'--\',info2_xiangxi,\'--\',info4,\'--\',price,perprice) info2_xiangxi1 = \'\' for j1 in info2_xiangxi: info2_xiangxi1 += j1 + \'\' #print(info2_xiangxi1) #化为字符串 item[\'houseinfo\']=info1 item[\'houseurl\']=info1_url item[\'housedizhi\']=info2_dizhi item[\'housexiangxi\']=info2_xiangxi1 item[\'houseprice\']=price item[\'houseperprice\']=perprice yield item
再看items.py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class LianjiaItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() houseinfo=scrapy.Field() houseurl=scrapy.Field() housedizhi=scrapy.Field() housexiangxi=scrapy.Field() houseprice=scrapy.Field() houseperprice=scrapy.Field() pass
接下来看pipelines.py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don\'t forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class LianjiaPipeline(object): def process_item(self, item, spider): print(\'房屋信息:\',item[\'houseinfo\']) print(\'房屋链接:\', item[\'houseurl\']) print(\'房屋位置:\', item[\'housedizhi\']) print(\'房屋详细信息:\', item[\'housexiangxi\']) print(\'房屋总价:\', item[\'houseprice\'],\'万\') print(\'平方米价格:\', item[\'houseperprice\']) print(\'====\'*10) return item
接下来看csvpipelines.py
import os print(os.getcwd()) class LianjiaPipeline(object): def process_item(self, item, spider): with open(\'G:\pythonAI\爬虫大全\lianjia\data\house.txt\', \'a+\', encoding=\'utf-8\') as fp: name=str(item[\'houseinfo\']) dizhi=str(item[\'housedizhi\']) info=str(item[\'housexiangxi\']) price=str(item[\'houseprice\']) perprice=str(item[\'houseperprice\']) fp.write(name + dizhi + info+ price +perprice+ \'\n\') fp.flush() fp.close() return item print(\'写入文件成功\')
接下来看 settings.py
# -*- coding: utf-8 -*- # Scrapy settings for lianjia project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = \'lianjia\' SPIDER_MODULES = [\'lianjia.spiders\'] NEWSPIDER_MODULE = \'lianjia.spiders\' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = \'lianjia (+http://www.yourdomain.com)\' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 0.5 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # \'Accept\': \'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\', # \'Accept-Language\': \'en\', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html SPIDER_MIDDLEWARES = { \'lianjia.middlewares.LianjiaSpiderMiddleware\': 543, #\'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware\' : None, #\'lianjia.rotate_useragent.RotateUserAgentMiddleware\' :400 } # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { \'lianjia.middlewares.LianjiaDownloaderMiddleware\': 543, } # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # \'scrapy.extensions.telnet.TelnetConsole\': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { \'lianjia.pipelines.LianjiaPipeline\': 300, #\'lianjia.iopipelines.LianjiaPipeline\': 301, \'lianjia.csvpipelines.LianjiaPipeline\':302, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings HTTPCACHE_ENABLED = True HTTPCACHE_EXPIRATION_SECS = 0 HTTPCACHE_DIR = \'httpcache\' HTTPCACHE_IGNORE_HTTP_CODES = [] HTTPCACHE_STORAGE = \'scrapy.extensions.httpcache.FilesystemCacheStorage\' LOG_LEVEL=\'INFO\' LOG_FILE=\'lianjia.log\'
最后看starthouse.py
from scrapy.cmdline import execute execute([\'scrapy\', \'crawl\', \'mylianjia\'])
代码运行结果
保存到本地效果:
完成,事后可以分析一下房价和每平方米的方剂,,因为是海淀区的,,可以看到 都是好几万一平米,总价也得几百万了 而且是二手房,,,可以看出来 ,在北京买房太难。。。。
源码 tyutltf/lianjia: 爬取链家北京房价并保存txt文档 https://github.com/tyutltf/lianjia
版权声明:本文为yuxuanlian原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。