本文使用tensorflow2, 并采取一种较为通用的数据处理手段,并分别手动构建简单模型, 层数较深的resnet网络,和基于VGG19的迁移学习,以帮助初学者快速在小数据集上搭建模型,并训练一个较为满意的结果。

对于自定义数据集的图片任务,通用流程一般分为以下几个步骤:

  • Load data

  • Train-Val-Test

  • Build model

  • Transfer Learning

其中大部分精力会花在数据的准备和预处理上,本文用一种较为通用的数据处理手段,并通过手动构建,简单模型, 层数较深的resnet网络,和基于VGG19的迁移学习。

你可以通过这个例子,快速搭建网络,并训练处一个较为满意的结果。

1. Load data

数据集来自Pokemon的5分类数据, 每一种的图片数量为200多张,是一个较小型的数据集。

官方项目链接:

https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/

1.1 数据集介绍

Pokemon文件夹中包含5个子文件,其中每个子文件夹名为对应的类别名。文件夹中包含有png, jpeg的图片文件。

1.2 解题思路

  • 由于文件夹中没有划分,训练集和测试集,所以需要构建一个csv文件读取所有的文件,及其类别

  • shuffle数据集以后,划分Train_val_test

  • 对数据进行预处理, 数据标准化,数据增强, 可视化处理

“””python
# 创建数字编码表

  import os
  import glob
  import random
  import csv
  import tensorflow as tf
  from tensorflow import keras
  import matplotlib.pyplot as plt
  import time
  
  
  def load_csv(root, filename, name2label):
      """
      将分散在各文件夹中的图片, 转换为图片和label对应的一个dataset文件, 格式为csv
      :param root: 文件路径(每个子文件夹中的文件属于一类)
      :param filename: 文件名
      :param name2label: 类名编码表  {\'类名1\':0, \'类名2\':1..}
      :return: images, labels
      """
      # 判断是否csv文件已经生成
      if not os.path.exists(os.path.join(root, filename)):  # join-将路径与文件名何为一个路径并返回(没有会生成新路径)
          images = []  # 存的是文件路径
          for name in name2label.keys():
              # pokemon\pikachu\00000001.png
              # glob.glob() 利用通配符检索路径内的文件,类似于正则表达式
              images += glob.glob(os.path.join(root, name, \'*\'))  # png, jpg, jpeg
          print(name2label)
          print(len(images), images)
  
          random.shuffle(images)
  
          with open(os.path.join(root, filename), \'w\', newline=\'\') as f:
              writer = csv.writer(f)
              for img in images:
                  name = img.split(os.sep)[1]  # os.sep 表示分隔符 window-\'\\\' , linux-\'/\'
                  label = name2label[name]  # 0, 1, 2..
                  # \'pokemon\\bulbasaur\\00000000.png\', 0
                  writer.writerow([img, label])  # 如果不设定newline=\'\', 2个数据会分为2行写
              print(\'write into csv file:\', filename)
  
      # 读取现有文件
      images, labels = [], []
      with open(os.path.join(root, filename)) as f:
          reader = csv.reader(f)
          for row in reader:
              # \'pokemon\\bulbasaur\\00000000.png\', 0
              img, label = row
              label = int(label)  # str-> int
              images.append(img)
              labels.append(label)
  
      assert len(images) == len(labels)
  
      return images, labels
  
  
  def load_pokemon(root, mode=\'train\'):
      """
      # 创建数字编码表
      :param root: root path
      :param mode: train, valid, test
      :return: images, labels, name2label
      """
  
      name2label = {}  # {\'bulbasaur\': 0, \'charmander\': 1, \'mewtwo\': 2, \'pikachu\': 3, \'squirtle\': 4}
      for name in sorted(os.listdir(os.path.join(root))):
          # sorted() 是为了复现结果的一致性
          # os.listdir - 返回路径下的所有文件(文件夹,文件)列表
          if not os.path.isdir(os.path.join(root, name)):  # 是否为文件夹且是否存在
              continue
          # 每个类别编码一个数字
          name2label[name] = len(name2label)
  
      # 读取label
      images, labels = load_csv(root, \'images.csv\', name2label)
  
      # 划分数据集 [6:2:2]
      if mode == \'train\':
          images = images[:int(0.6 * len(images))]
          labels = labels[:int(0.6 * len(labels))]  # len(images) == len(labels)
  
      elif mode == \'valid\':
          images = images[int(0.6 * len(images)):int(0.8 * len(images))]
          labels = labels[int(0.6 * len(labels)):int(0.8 * len(labels))]
  
      else:
          images = images[int(0.8 * len(images)):]
          labels = labels[int(0.8 * len(labels)):]
  
      return images, labels, name2label
  
  
  # imagenet 数据集均值, 方差
  img_mean = tf.constant([0.485, 0.456, 0.406])  # 3 channel
  img_std = tf.constant([0.229, 0.224, 0.225])
  
  def normalization(x, mean=img_mean, std=img_std):
      # [224, 224, 3]
      x = (x - mean) / std
      return x
  
  def denormalization(x, mean=img_mean, std=img_std):
      x = x * std + mean
      return x
  
  
  def preprocess(x, y):
      # x: path, y: label
      x = tf.io.read_file(x)  # 2进制
      # x = tf.image.decode_image(x)
      x = tf.image.decode_jpeg(x, channels=3)  # RGBA
      x = tf.image.resize(x, [244, 244])
  
      # data augmentation
      # x = tf.image.random_flip_up_down(x)
      x = tf.image.random_flip_left_right(x)
      x = tf.image.random_crop(x, [224, 224, 3])  # 模型缩减比例不宜过大,否则会增大训练难度
  
      x = tf.cast(x, dtype=tf.float32) / 255. # unit8 -> float32
      # U[0,1] -> N(0,1)  # 提高训练准确度
      x = normalization(x)
  
      y = tf.convert_to_tensor(y)
  
      return x, y
  
  def main():
      images, labels, name2label = load_pokemon(\'pokemon\', \'train\')
      print(\'images:\', len(images), images)
      print(\'labels:\', len(labels), labels)
      # print(name2label)
  
      # .map()函数要位于.batch()之前, 否则 x=tf.io.read_file()会一次读取一个batch的图片,从而报错
      db = tf.data.Dataset.from_tensor_slices((images, labels)).map(preprocess).shuffle(1000).batch(32)
  
      # tf.summary()
      # 提供了各类方法(支持各种多种格式)用于保存训练过程中产生的数据(比如loss_value、accuracy、整个variable),
      # 这些数据以日志文件的形式保存到指定的文件夹中。
  
      # 数据可视化:而tensorboard可以将tf.summary()
      # 记录下来的日志可视化,根据记录的数据格式,生成折线图、统计直方图、图片列表等多种图。
      # tf.summary()
      # 通过递增的方式更新日志,这让我们可以边训练边使用tensorboard读取日志进行可视化,从而实时监控训练过程。
      writer = tf.summary.create_file_writer(\'logs\')
      for step, (x, y) in enumerate(db):
          with writer.as_default():
              x = denormalization(x)
              tf.summary.image(\'img\', x, step=step, max_outputs=9)  # STEP:默认选项,指的是横轴显示的是训练迭代次数
  
              time.sleep(5)
  
  
  
  if __name__ == \'__main__\':
      main()

“””

2. 构建模型进行训练

2.1 自定义小型网络

由于数据集数量较少,大型网络的训练中往往会出现过拟合情况,这里就定义了一个2层卷积的小型网络。
引入early_stopping回调函数后,3个epoch没有较大变化的情况下,模型训练的准确率为0.8547

“””
# 1. 自定义小型网络
model = keras.Sequential([
layers.Conv2D(16, 5, 3),
layers.MaxPool2D(3, 3),
layers.ReLU(),
layers.Conv2D(64, 5, 3),
layers.MaxPool2D(2, 2),
layers.ReLU(),
layers.Flatten(),
layers.Dense(64),
layers.ReLU(),
layers.Dense(5)
])

  model.build(input_shape=(None, 224, 224, 3))  
  model.summary()
  
  early_stopping = EarlyStopping(
      monitor=\'val_loss\',
      patience=3,
      min_delta=0.001
  )
  
  
  model.compile(optimizer=optimizers.Adam(lr=1e-3),
                 loss=losses.CategoricalCrossentropy(from_logits=True),
                 metrics=[\'accuracy\'])
  model.fit(db_train, validation_data=db_val, validation_freq=1, epochs=100,
             callbacks=[early_stopping])
  model.evaluate(db_test)

“””

2.2 自定义的Resnet网络

resnet 网络对于层次较深的网络的可训练型提升很大,主要是通过一个identity layer保证了深层次网络的训练效果不会弱于浅层网络。
其他文章中有详细介绍resnet的搭建,这里就不做赘述, 这里构建了一个resnet18网络, 准确率0.7607。

“””
import os

  import numpy as np
  import tensorflow as tf
  from tensorflow import keras
  from tensorflow.keras import layers
  
  tf.random.set_seed(22)
  np.random.seed(22)
  os.environ[\'TF_CPP_MIN_LOG_LEVEL\'] = \'2\'
  assert tf.__version__.startswith(\'2.\')
  
  
  class ResnetBlock(keras.Model):
  
      def __init__(self, channels, strides=1):
          super(ResnetBlock, self).__init__()
  
          self.channels = channels
          self.strides = strides
  
          self.conv1 = layers.Conv2D(channels, 3, strides=strides,
                                     padding=[[0, 0], [1, 1], [1, 1], [0, 0]])
          self.bn1 = keras.layers.BatchNormalization()
          self.conv2 = layers.Conv2D(channels, 3, strides=1,
                                     padding=[[0, 0], [1, 1], [1, 1], [0, 0]])
          self.bn2 = keras.layers.BatchNormalization()
  
          if strides != 1:
              self.down_conv = layers.Conv2D(channels, 1, strides=strides, padding=\'valid\')
              self.down_bn = tf.keras.layers.BatchNormalization()
  
      def call(self, inputs, training=None):
          residual = inputs
  
          x = self.conv1(inputs)
          x = tf.nn.relu(x)
          x = self.bn1(x, training=training)
          x = self.conv2(x)
          x = tf.nn.relu(x)
          x = self.bn2(x, training=training)
  
          # 残差连接
          if self.strides != 1:
              residual = self.down_conv(inputs)
              residual = tf.nn.relu(residual)
              residual = self.down_bn(residual, training=training)
  
          x = x + residual
          x = tf.nn.relu(x)
          return x
  
  
  class ResNet(keras.Model):
  
      def __init__(self, num_classes, initial_filters=16, **kwargs):
          super(ResNet, self).__init__(**kwargs)
  
          self.stem = layers.Conv2D(initial_filters, 3, strides=3, padding=\'valid\')
  
          self.blocks = keras.models.Sequential([
              ResnetBlock(initial_filters * 2, strides=3),
              ResnetBlock(initial_filters * 2, strides=1),
              # layers.Dropout(rate=0.5),
  
              ResnetBlock(initial_filters * 4, strides=3),
              ResnetBlock(initial_filters * 4, strides=1),
  
              ResnetBlock(initial_filters * 8, strides=2),
              ResnetBlock(initial_filters * 8, strides=1),
  
              ResnetBlock(initial_filters * 16, strides=2),
              ResnetBlock(initial_filters * 16, strides=1),
          ])
  
          self.final_bn = layers.BatchNormalization()
          self.avg_pool = layers.GlobalMaxPool2D()
          self.fc = layers.Dense(num_classes)
  
      def call(self, inputs, training=None):
          # print(\'x:\',inputs.shape)
          out = self.stem(inputs, training = training)
          out = tf.nn.relu(out)
  
          # print(\'stem:\',out.shape)
  
          out = self.blocks(out, training=training)
          # print(\'res:\',out.shape)
  
          out = self.final_bn(out, training=training)
          # out = tf.nn.relu(out)
  
          out = self.avg_pool(out)
  
          # print(\'avg_pool:\',out.shape)
          out = self.fc(out)
  
          # print(\'out:\',out.shape)
  
          return out
  
  
  def main():
      num_classes = 5
  
      resnet18 = ResNet(5)
      resnet18.build(input_shape=(None, 224, 224, 3))
      resnet18.summary()
  
  
  if __name__ == \'__main__\':
      main()

“””

“””
# 2.resnet18训练, 图片数量较小,训练结果不是特别好
# resnet = ResNet(5) # 0.7607
# resnet.build(input_shape=(None, 224, 224, 3))
# resnet.summary()
“””

2.3 VGG19迁移学习

迁移学习利用了数据集之间的相似性,对于数据集数量较少的时候,训练效果会远优于其他。
在训练过程中,使用include_top=False, 去掉最后分类的基层Dense, 重新构建并训练就可以了。准确率0.9316

“””
# 3. VGG19迁移学习,迁移学习利用数据集之间的相似性, 结果远好于其他2种
# 为了方便,这里仍然使用resnet命名
net = tf.keras.applications.VGG19(weights=\’imagenet\’, include_top=False, pooling=\’max\’ )
net.trainable = False
resnet = keras.Sequential([
net,
layers.Dense(5)
])
resnet.build(input_shape=(None, 224, 224, 3)) # 0.9316
resnet.summary()

  early_stopping = EarlyStopping(
      monitor=\'val_loss\',
      patience=3,
      min_delta=0.001
  )
  
  
  resnet.compile(optimizer=optimizers.Adam(lr=1e-3),
                 loss=losses.CategoricalCrossentropy(from_logits=True),
                 metrics=[\'accuracy\'])
  resnet.fit(db_train, validation_data=db_val, validation_freq=1, epochs=100,
             callbacks=[early_stopping])
  resnet.evaluate(db_test)

“””

附录:

train_scratch.py 代码

“””

import os

os.environ[\'TF_CPP_MIN_LOG_LEVEL\'] = \'2\'

import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers, optimizers, losses
from tensorflow.keras.callbacks import EarlyStopping

tf.random.set_seed(22)
np.random.seed(22)
assert tf.__version__.startswith(\'2.\')

# 设置GPU显存按需分配
# gpus = tf.config.experimental.list_physical_devices(\'GPU\')
# if gpus:
#     try:
#         # Currently, memory growth needs to be the same across GPUs
#         for gpu in gpus:
#             tf.config.experimental.set_memory_growth(gpu, True)
#         logical_gpus = tf.config.experimental.list_logical_devices(\'GPU\')
#         print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
#     except RuntimeError as e:
#         # Memory growth must be set before GPUs have been initialized
#         print(e)

from pokemon import load_pokemon, normalization
from resnet import ResNet


def preprocess(x, y):
    # x: 图片的路径,y:图片的数字编码
    x = tf.io.read_file(x)
    x = tf.image.decode_jpeg(x, channels=3)  # RGBA
    # 图片缩放
    # x = tf.image.resize(x, [244, 244])
    # 图片旋转
    # x = tf.image.rot90(x,2)
    # 随机水平翻转
    x = tf.image.random_flip_left_right(x)
    # 随机竖直翻转
    # x = tf.image.random_flip_up_down(x)

    # 图片先缩放到稍大尺寸
    x = tf.image.resize(x, [244, 244])
    # 再随机裁剪到合适尺寸
    x = tf.image.random_crop(x, [224, 224, 3])

    # x: [0,255]=> -1~1
    x = tf.cast(x, dtype=tf.float32) / 255.
    x = normalization(x)
    y = tf.convert_to_tensor(y)
    y = tf.one_hot(y, depth=5)

    return x, y


batchsz = 32

# create train db
images1, labels1, table = load_pokemon(\'pokemon\', \'train\')
db_train = tf.data.Dataset.from_tensor_slices((images1, labels1))
db_train = db_train.shuffle(1000).map(preprocess).batch(batchsz)
# create validation db
images2, labels2, table = load_pokemon(\'pokemon\', \'valid\')
db_val = tf.data.Dataset.from_tensor_slices((images2, labels2))
db_val = db_val.map(preprocess).batch(batchsz)
# create test db
images3, labels3, table = load_pokemon(\'pokemon\', mode=\'test\')
db_test = tf.data.Dataset.from_tensor_slices((images3, labels3))
db_test = db_test.map(preprocess).batch(batchsz)


# 1. 自定义小型网络
# resnet = keras.Sequential([
#     layers.Conv2D(16, 5, 3),
#     layers.MaxPool2D(3, 3),
#     layers.ReLU(),
#     layers.Conv2D(64, 5, 3),
#     layers.MaxPool2D(2, 2),
#     layers.ReLU(),
#     layers.Flatten(),
#     layers.Dense(64),
#     layers.ReLU(),
#     layers.Dense(5)
# ])  # 0.8547


# 2.resnet18训练, 图片数量较小,训练结果不是特别好
# resnet = ResNet(5)  # 0.7607
# resnet.build(input_shape=(None, 224, 224, 3))
# resnet.summary()


# 3. VGG19迁移学习,迁移学习利用数据集之间的相似性, 结果远好于其他2种
net = tf.keras.applications.VGG19(weights=\'imagenet\', include_top=False, pooling=\'max\' )
net.trainable = False
resnet = keras.Sequential([
    net,
    layers.Dense(5)
])
resnet.build(input_shape=(None, 224, 224, 3))   # 0.9316
resnet.summary()

early_stopping = EarlyStopping(
    monitor=\'val_loss\',
    patience=3,
    min_delta=0.001
)


resnet.compile(optimizer=optimizers.Adam(lr=1e-3),
               loss=losses.CategoricalCrossentropy(from_logits=True),
               metrics=[\'accuracy\'])
resnet.fit(db_train, validation_data=db_val, validation_freq=1, epochs=100,
           callbacks=[early_stopping])
resnet.evaluate(db_test)

“””

版权声明:本文为hp-lake原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/hp-lake/p/13174181.html