吴裕雄--天生自然 PYTHON数据分析:医疗数据分析 - 吴裕雄
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # plotly import chart_studio.plotly as py from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import plotly.graph_objs as go import seaborn as sns # word cloud library from wordcloud import WordCloud # matplotlib import matplotlib.pyplot as plt # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
dataframe = pd.read_csv("F:\\kaggleDataSet\\healthcare-data\\test_2v.csv")
import chart_studio.plotly as py from plotly.graph_objs import * df_heart_disease = dataframe[dataframe.heart_disease== 1] labels = df_heart_disease.gender pie1_list=df_heart_disease.heart_disease df_hypertension= dataframe[dataframe.hypertension == 1] labels1 = df_hypertension.gender pie1_list1=df_hypertension.hypertension labels2 = dataframe.Residence_type pie1_list2 = dataframe.heart_disease labels3 = dataframe.work_type pie1_list3 = dataframe.heart_disease fig = { \'data\': [ { \'labels\': labels, \'values\': pie1_list, \'type\': \'pie\', \'name\': \'Heart Disease\', \'marker\': {\'colors\': [\'rgb(56, 75, 126)\', \'rgb(18, 36, 37)\', \'rgb(34, 53, 101)\', \'rgb(36, 55, 57)\', \'rgb(6, 4, 4)\']}, \'domain\': {\'x\': [0, .48], \'y\': [0, .49]}, \'hoverinfo\':\'label+percent+name\', \'textinfo\':\'none\' }, { \'labels\': labels1, \'values\': pie1_list1, \'marker\': {\'colors\': [\'rgb(177, 127, 38)\', \'rgb(205, 152, 36)\', \'rgb(99, 79, 37)\', \'rgb(129, 180, 179)\', \'rgb(124, 103, 37)\']}, \'type\': \'pie\', \'name\': \'Hypertension\', \'domain\': {\'x\': [.52, 1], \'y\': [0, .49]}, \'hoverinfo\':\'label+percent+name\', \'textinfo\':\'none\' }, { \'labels\': labels2, \'values\': pie1_list2, \'marker\': {\'colors\': [\'rgb(33, 75, 99)\', \'rgb(79, 129, 102)\', \'rgb(151, 179, 100)\', \'rgb(175, 49, 35)\', \'rgb(36, 73, 147)\']}, \'type\': \'pie\', \'name\': \'Residence Type\', \'domain\': {\'x\': [0, .48], \'y\': [.51, 1]}, \'hoverinfo\':\'label+percent+name\', \'textinfo\':\'none\' }, { \'labels\': labels3, \'values\': pie1_list3, \'marker\': {\'colors\': [\'rgb(146, 123, 21)\', \'rgb(177, 180, 34)\', \'rgb(206, 206, 40)\', \'rgb(175, 51, 21)\', \'rgb(35, 36, 21)\']}, \'type\': \'pie\', \'name\':\'Work Type\', \'domain\': {\'x\': [.52, 1], \'y\': [.51, 1]}, \'hoverinfo\':\'label+percent+name\', \'textinfo\':\'none\' } ], \'layout\': {\'title\': \'\', \'showlegend\': False} } iplot(fig)
import chart_studio.plotly as py import plotly.graph_objs as go # Create random data with numpy import numpy as np df_250 = dataframe.iloc[:250,:] random_x = df_250.index random_y0 = df_250.avg_glucose_level random_y1 = df_250.bmi random_y2 = df_250.age # Create traces trace0 = go.Scatter( x = random_x, y = random_y0, mode = \'markers\', name = \'Avg. Glucose Level\' ) trace1 = go.Scatter( x = random_x, y = random_y1, mode = \'lines+markers\', name = \'BMI\' ) trace2 = go.Scatter( x = random_x, y = random_y2, mode = \'lines\', name = \'Age\' ) data = [trace0, trace1, trace2] iplot(data, filename=\'scatter-mode\')
import chart_studio.plotly as py import plotly.graph_objs as go df_heart_disease = dataframe[dataframe.heart_disease==1] labels = df_heart_disease.gender x = labels trace0 = go.Box( y=dataframe.age, x=x, name=\'Age\', marker=dict( color=\'#3D9970\' ) ) trace1 = go.Box( y=dataframe.avg_glucose_level, x=x, name=\'Avg. Glucose Level\', marker=dict( color=\'#FF4136\' ) ) trace2 = go.Box( y=dataframe.bmi, x=x, name=\'BMI\', marker=dict( color=\'#FF851B\' ) ) data = [trace0, trace1, trace2] layout = go.Layout( yaxis=dict( title=\'Attendants Who Has Heart Disease\', zeroline=False ), boxmode=\'group\' ) fig = go.Figure(data=data, layout=layout) iplot(fig)
import chart_studio.plotly as py import plotly.graph_objs as go df_hypertension= dataframe[dataframe.hypertension == 1] labels1 = df_hypertension.gender x = labels1 trace0 = go.Box( y=dataframe.age, x=x, name=\'Age\', marker=dict( color=\'#3D9970\' ) ) trace1 = go.Box( y=dataframe.avg_glucose_level, x=x, name=\'Avg. Glucose Level\', marker=dict( color=\'#FF4136\' ) ) trace2 = go.Box( y=dataframe.bmi, x=x, name=\'BMI\', marker=dict( color=\'#FF851B\' ) ) data = [trace0, trace1, trace2] layout = go.Layout( yaxis=dict( title=\'Attendants Who Has Hypertension\', zeroline=False ), boxmode=\'group\' ) fig = go.Figure(data=data, layout=layout) iplot(fig)
df_heart_disease_1 = dataframe.smoking_status [dataframe.heart_disease == 1 ] df_hypertension_1 = dataframe.smoking_status [dataframe.hypertension == 1 ] trace1 = go.Histogram( x=df_heart_disease_1, opacity=0.75, name = "Heart Disease", marker=dict(color=\'rgba(171, 50, 96, 0.6)\')) trace2 = go.Histogram( x=df_hypertension_1, opacity=0.75, name = "Hypertension", marker=dict(color=\'rgba(12, 50, 196, 0.6)\')) data = [trace1, trace2] layout = go.Layout(barmode=\'overlay\', title=\' Association Between Smoking, Heart Disease & Hypertension\', xaxis=dict(title=\'Smoking Status\'), yaxis=dict( title=\'Attendants\'), ) fig = go.Figure(data=data, layout=layout) iplot(fig)
df_heart_disease_1 = dataframe.work_type [dataframe.heart_disease == 1 ] df_hypertension_1 = dataframe.work_type [dataframe.hypertension == 1 ] trace1 = go.Histogram( x=df_heart_disease_1, opacity=0.75, name = "Heart Disease", marker=dict(color=\'rgba(171, 50, 96, 0.6)\')) trace2 = go.Histogram( x=df_hypertension_1, opacity=0.75, name = "Hypertension", marker=dict(color=\'rgba(12, 50, 196, 0.6)\')) data = [trace1, trace2] layout = go.Layout(barmode=\'overlay\', title=\' Association Between Work Type, Heart Disease & Hypertension\', xaxis=dict(title=\'\'), yaxis=dict( title=\'Attendants\'), ) fig = go.Figure(data=data, layout=layout) iplot(fig)
版权声明:本文为tszr原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。