SQLServer常用运维SQL整理
今天线上SQLServer数据库的CPU被打爆了,紧急情况下,分析了数据库阻塞、连接分布、最耗CPU的TOP10 SQL、查询SQL并行度配置、查询SQL 重编译的原因等等
整理了一些常用的SQL
1. 查询数据库阻塞
SELECT * FROM sys.sysprocesses WHERE blocked<>0
查询结果中,重点看Blocked这一列,先找出最多的SID,然后循环找出Root的阻塞根源SID
查询阻塞根源Session的SQL
DBCC Inputbuffer(sid)
2. 查询SQL连接分布
SELECT Hostname FROM sys.sysprocesses WHERE hostname<>\'\'
3. 查询最消耗CPU的SQL Top10
select top(10) st.text as Query, qs.total_worker_time, qs.execution_count from sys.dm_exec_query_stats as qs CROSS Apply sys.dm_exec_sql_text(qs.sql_handle) AS st order by qs.total_worker_time desc
4. 查看SQLServer并行度
SELECT value_in_use FROM sys.configurations WHERE name = \'max degree of parallelism\'
并行度如果设置为1,To suppress parallel plan generation, set max degree of parallelism to 1
将阻止并行编译生成SQL执行计划,最大并行度设置为1
USE DatabaseName ; GO EXEC sp_configure \'show advanced options\', 1; GO RECONFIGURE WITH OVERRIDE; GO EXEC sp_configure \'max degree of parallelism\', 16; GO RECONFIGURE WITH OVERRIDE; GO
5. 查询SQL Server Recompilation Reasons
select dxmv.name, dxmv.map_key,dxmv.map_value from sys.dm_xe_map_values as dxmv where dxmv.name=\'statement_recompile_cause\' order by dxmv.map_key
6. 将SQL Trace文件存入一张表,做聚合分析(CPU、IO、执行时间等)
SELECT * INTO TabSQL FROM fn_trace_gettable(\'C:\Users\***\Desktop\Trace\sql05trace20180606-业务.trc\', default); GO
对上述表数据进行聚合分析最耗时的SQL
select top 100 replace(replace(replace( substring(Textdata,1,6600) ,char(10),\' \'),char(13),\' \') ,char(9),\' \') as \'名称\', --substring(Textdata,1,6600) as old, count(*) as \'数量\', sum(duration/1000) as \'总执行时间ms\', avg(duration/1000) as \'平均执行时间ms\', avg(cpu) as \'平均CPU时间ms\', avg(reads) as \'平均读次数\', avg(writes) as \'平均写次数\', LoginName from TabSQL t group by replace(replace(replace( substring(Textdata,1,6600) ,char(10),\' \'),char(13),\' \') ,char(9),\' \') , LoginName order by sum(duration) desc
最耗IO的SQL
select TOP 100 replace(replace(replace( substring(Textdata,1,6600) ,char(10),\' \'),char(13),\' \') ,char(9),\' \') as \'名称\' ,LoginName, count(*) as \'数量\', sum(duration/1000) as \'总执行时间ms\', avg(duration/1000) as \'平均执行时间ms\', sum(cpu) as \'总CPU时间ms\', avg(cpu) as \'平均CPU时间ms\', sum(reads) as \'总读次数\', avg(reads) as \'平均读次数\', avg(writes) as \'平均写次数\' from TabSQL group by replace(replace(replace( substring(Textdata,1,6600) ,char(10),\' \'),char(13),\' \') ,char(9),\' \') ,LoginName order by sum(reads) desc
最耗CPU的SQL
SELECT TOP 100 replace(replace(replace( substring(Textdata,1,6600) ,char(10),\' \'),char(13),\' \') ,char(9),\' \') as \'名称\',LoginName, count(*) as \'数量\', sum(duration/1000) as \'总执行时间ms\', avg(duration/1000) as \'平均执行时间ms\', sum(cpu) as \'总CPU时间\', avg(cpu) as \'平均CPU时间\', avg(reads) as \'平均读次数\', avg(writes) as \'平均写次数\' from TabSQL group by replace(replace(replace( substring(Textdata,1,6600) ,char(10),\' \'),char(13),\' \') ,char(9),\' \') ,LoginName order by avg(cpu) desc
周国庆
2019/7/8